

Molecular Docking and Network-Based Analysis of *Piper betle* Linn Phytochemicals as Potential GABA_A Receptor Modulators for Neuroprotection

Mohan Gaanappriya and Kesavan Amala*

Department of Biotechnology, St Peters Institute of Higher Education and Research, Avadi, Chennai, INDIA

*amalavenkey@gmail.com

Abstract

Neurodegenerative diseases are characterized by ongoing degeneration of neurons, frequently associated with neuroinflammation, oxidative stress and excitotoxicity. The GABAergic system is crucial for inhibitory neurotransmission and its dysregulation has been implicated in conditions such as Alzheimer's disease (AD), Parkinson's disease (PD) and Amyotrophic Lateral Sclerosis (ALS). The present study aims to isolate neuroprotective agents from the phytochemicals of *Piper betle* Linn. utilizing methodologies such as molecular docking, network-based interaction analyses and pharmacokinetic profiling. Molecular docking studies revealed strong interactions between the compounds Stigmasterol, Kurchessine and Aletamine with the GABA_A receptor (PDB ID: 4COF). These interactions demonstrated high binding affinity and significant interactions with key amino acids including TYR97, LEU99 and GLU155. ADMET (Absorption, Distribution, Metabolism, Excretion and Toxicity) profiling confirmed the permeability of these compounds across the blood-brain barrier.

Furthermore, network analysis using tools such as GeneMANIA and STRING elucidated their role in modulating GABAergic pathways. This investigation proposes the phytochemicals of *Piper betle* Linn as potential therapeutic agents for targeting neurodegenerative disorders through modulation of the GABA_A receptor. Future drug development endeavors should focus on in vivo validation alongside structural modifications to improve drugability and therapeutic efficacy.

Keywords: GABA_A receptor, molecular docking, neurodegeneration, *Piper betle* Linn, network analysis, phytochemicals.

Introduction

Neurodegenerative diseases (NDDs) encompass a diverse array of disorders characterised by the progressive decline in neuronal structure and function, ultimately leading to deficits in cognitive and motor abilities. Prominent examples of NDDs include Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and Amyotrophic

Lateral Sclerosis (ALS)^{16,21,37}. The pathophysiological mechanisms commonly associated with these diseases involve protein misfolding and aggregation, neuroinflammation and oxidative stress, culminating in neuronal dysfunction and subsequent cellular apoptosis^{14,44}. AD is characterised by the deposition of amyloid-beta (Aβ) and tau proteins. PD is marked by the aggregation of alpha-synuclein and ALS is defined by TDP-43 inclusions which represent critical pathological features^{14,44}.

In recent years, significant progress has been made in identifying natural compounds that may inhibit the progression of NDDs. The *Piper betle* Linn plant, traditionally recognized for its medicinal properties, contains various bioactive compounds that confer anti-inflammatory, antioxidant and neuroprotective effects^{25,35}. These pharmacological attributes are particularly relevant to neurodegenerative diseases, as inflammation and oxidative stress are key contributors to disease progression^{18,33}. Specifically, compounds such as chloro and methyl-chavicol, along with chavibetol found in *Piper betle* Linn, possess antibacterial and anti-inflammatory properties and may be instrumental in the modulation of neuroinflammation³⁶. Phytochemical analysis revealed the presence of flavonoids and saponins in the ethanolic extract, compounds known to modulate GABAergic neurotransmission, which may underlie the observed anxiolytic effects²⁰.

Moreover, the modulation of neurotransmitter systems, particularly GABAergic signaling, has garnered considerable attention in neurodegenerative research. Gamma-Aminobutyric acid (GABA) is the predominant inhibitory neurotransmitter within the central nervous system; hence, disruptions in GABA signaling pathways are implicated in numerous neurodegenerative disorders⁷. GABAergic signaling may represent a major mechanism through which *Piper betle* Linn exerts neuroprotective actions, countering excitotoxicity and neuronal degeneration¹⁰. This is particularly relevant in the context of ALS and AD where excitotoxicity is increasingly recognized as a fundamental mechanism underlying neurodegenerative processes⁴⁹.

GABRA1, located on chromosome 5, encodes the alpha subunit of the GABA_A receptor, which plays a critical role in inhibitory neurotransmission⁶. The conductance of ligand-gated chloride channels within the GABA_A receptor can be modulated by various compounds including benzodiazepines³¹. Recent advancements in computational

biology and molecular docking methodologies have enabled researchers to predict potential pharmacological interactions between bioactive compounds and key receptors. Such *in silico* approaches facilitate rapid data collection, offer cost-effective screening solutions and allow for the concurrent evaluation of multiple targets, providing an alternative to traditional *in vivo* and *in vitro* experimental methods¹.

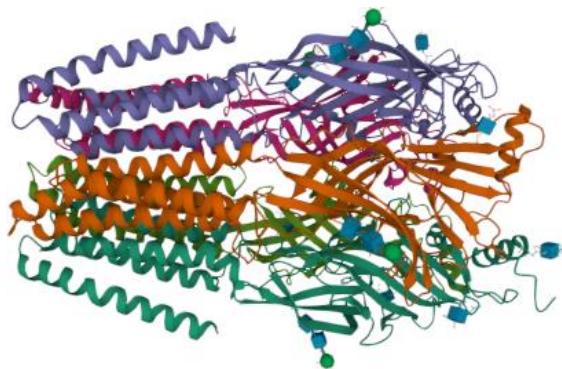
Network analysis via GeneMANIA has elucidated the functional interactions involving the GABA_A receptor and its associated genes, revealing the complex mechanisms governing neurotransmission and synaptic activities²⁸. The present study utilizes GeneMANIA to investigate both direct and indirect interactions of the GABA_A receptor in relation to neurodegenerative and psychiatric disorders. The growing interest in GABAergic pharmacotherapeutics has prompted investigations into plant-derived compounds for potential applications in treating psychiatric and neurodegenerative conditions. Numerous medicinal plants including Ashwagandha, Brahmi and Bhringaraj, are historically recognized to possess anxiolytic and antidepressant properties.

Additionally, flavonoids such as apigenin, hypericin, chrysins and amentoflavone have gained attention for their therapeutic efficacy in central nervous system disorders.⁴³ This study aims to elucidate the role of the GABA_A receptor within neurobiology, emphasizing its implications in neurodevelopmental and psychiatric disorders. The molecular docking analyses will also investigate the interactions between selected phytochemicals derived from *Piper betle* Linn and the GABA_A receptor.

Material and Methods

This study examines the efficacy of specific phytochemicals in binding to the bioactive amino acid residues of the GABA_A receptor, specifically Leu99, Ile154, Glu155 and Asp163. It is posited that the binding interaction with these residues facilitates the opening of chloride channels, thus generating inhibitory postsynaptic potentials (IPSPs) and leading to the hyperpolarization of neurons.

Consequently, the functionality of inhibitory neurons via the GABA_A receptor is enhanced, which, in turn, promotes neuroprotection and fosters synaptic stability.


The study employs molecular docking techniques to assess ligand-receptor interactions, using the Protein Data Bank (PDB) structure 4COF as a reference model for the GABA_A receptor (Figure 1). Molecular docking simulations will be conducted using computational tools to analyze the binding affinity and interaction stability of *Piper betle* Linn derived phytochemicals with the receptor's active site.

The computational workflow involves:

1. Retrieval of the three-dimensional structure of the GABA_A receptor (PDB ID: 4COF).

2. Selection and optimization of *Piper betle* Linn phytochemicals based on literature data.
3. Molecular docking analysis using AutoDock and PyRx software.
4. Evaluation of binding affinities, hydrogen bonding interactions and conformational stability.
5. Comparative analysis with known GABA_A receptor modulators to assess potential pharmacological relevance.

This study will provide insights into the therapeutic potential of *Piper betle* Linn phytochemicals in modulating GABA_A receptor function, with implications for developing novel neuroprotective agents.

Figure 1: Crystalline Structure of GABA- A receptor (4COF)

Receptor Structure: The crystalline structure of the GABA-A receptor (PDB ID: 4COF) was retrieved from the Protein Data Bank (PDB). The protein clean-up process was performed and essential missing hydrogen atoms were added. Different orientations of the lead molecules with respect to the target protein were evaluated using AutoDock version 4. The best docking pose was selected based on interaction study analysis.

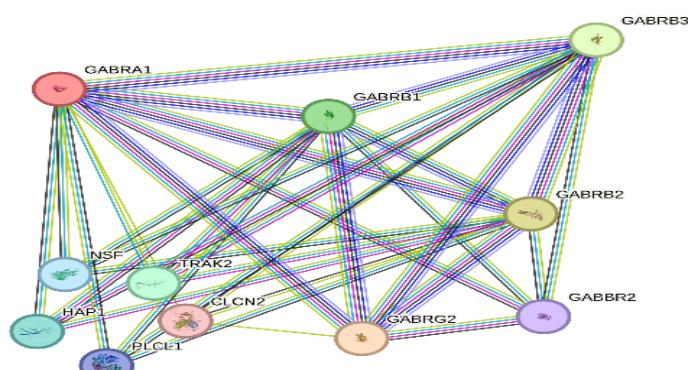
Docking Process: Essential hydrogen atoms, Kollman united atom type charges and solvation parameters were added using AutoDock tools. Affinity (grid) maps with grid points and a spacing of 0.375 Å were generated using the Autogrid program³³. The AutoDock parameter set and distance-dependent dielectric functions were utilized to calculate van der Waals and electrostatic interactions. Docking simulations were performed using the Lamarckian Genetic Algorithm (LGA) and the Solis and Wets⁴⁵ local search method. The initial positions, orientations and torsions of the ligand molecules were assigned randomly, with all rotatable torsions being released during docking. Each docking experiment comprised of two independent runs, terminating after a maximum of 250,000 energy evaluations. The population size was set to 150. During the search, a translational step of 0.2 Å, as well as quaternion and torsion steps of 5, were applied.

ADMET Studies: The evaluation of crucial ADMET (Absorption, Distribution, Metabolism, Excretion and

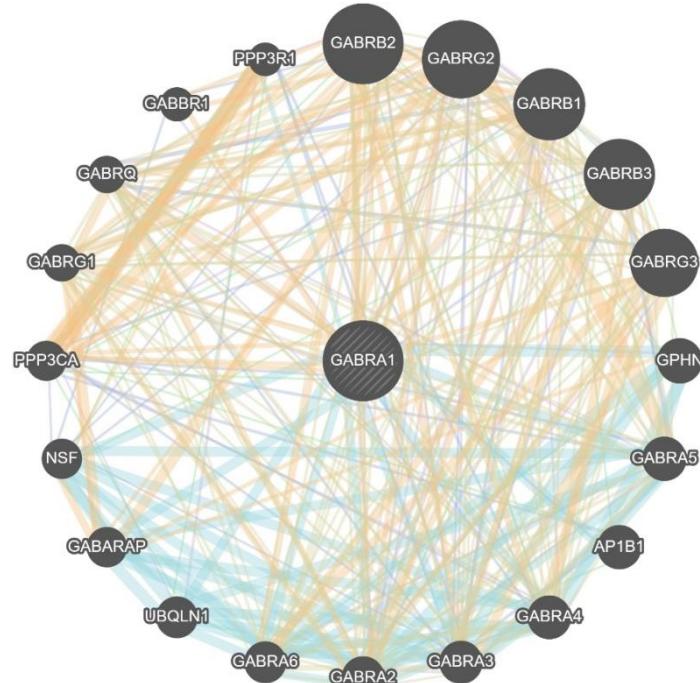
Toxicity) parameters, as well as drug-likeness properties, was conducted using ADMET Lab 2.0 (accessible at <https://admetmesh.scbdd.com/>) and pkCSM³⁹. This comprehensive analysis provided valuable insights into the pharmacokinetic properties and the likelihood of a compound becoming a viable drug candidate, significantly enhancing the robustness and reliability of the study.

Gene-Gene Interaction Analysis: Gene-gene interaction analysis is conducted mainly through the use of GeneMANIA, which is online at <https://genemania.org/>. GeneMANIA offers analysis of gene function, sequence construction and functional classification that cater to single-gene or multi-gene queries as well as network scanning. Searching for genes potentially interacting with the gene candidate provides some insights into functional relationships and molecular dynamics within gene networks. It is, hence, an important tool in the study of gene function and the complex interactions that control biological processes¹⁷.

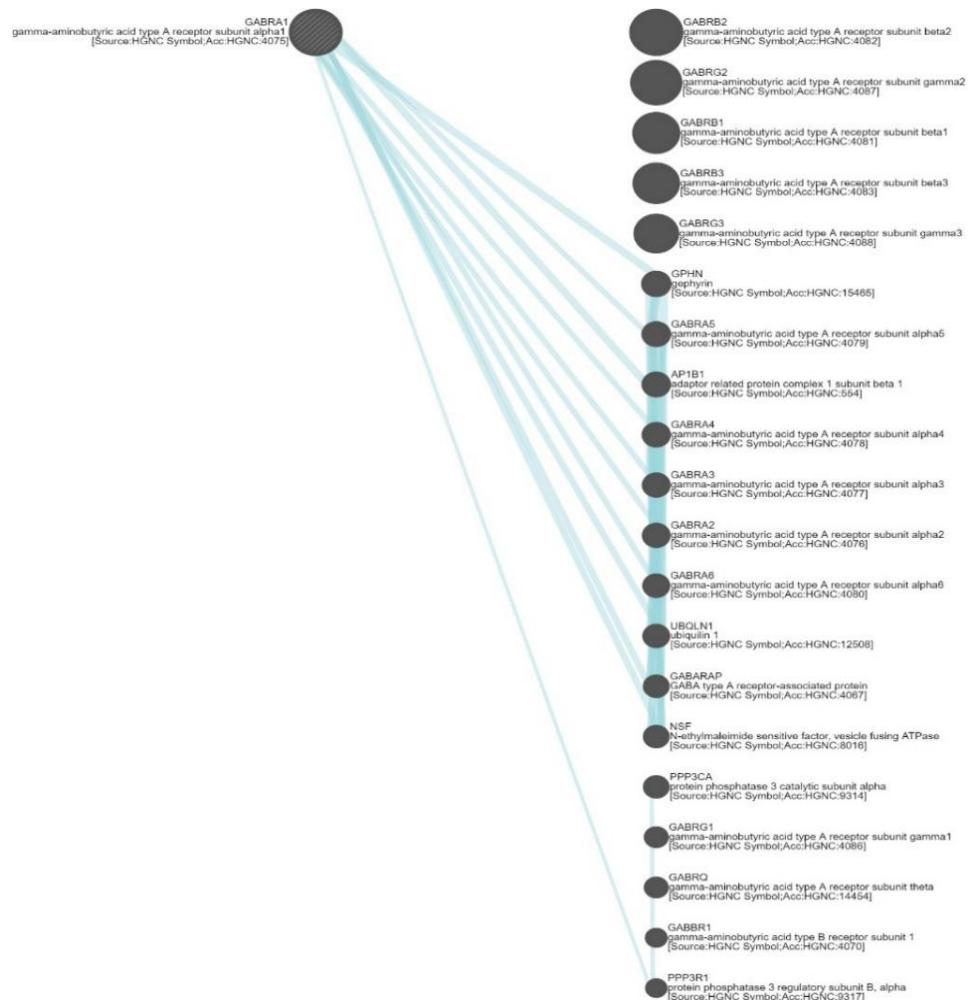
Protein-Protein Interaction Analysis: Protein-protein interaction analysis is performed using STRING software, which is online at <https://string-db.org/>⁴⁷. The STRING database assembles protein-protein interaction information for several organisms, combining evidence from various sources to attain a holistic outlook over protein connectivity. By analyzing these interactions, STRING informs of molecular mechanisms acting at the cellular function level which further contributes to the comprehension of larger biological systems and pathways of disease.


Results and Discussion

Gene–Gene Interaction Analysis: Network-based approaches elucidate the intricate molecular relationships that underlie cellular physiology by modeling biomolecules as nodes and their interactions as edges. In this context, we characterize the γ -aminobutyric acid (GABA) pathway which plays a crucial role in neuronal homeostasis by providing inhibitory functions, preventing excitotoxicity and modulating cognition, development and emotional affect⁵. The protein-protein interaction (PPI) data was sourced from


UniProt, which provides curated functional annotations and validated interactors⁸ along with GeneInvestigator, which ranks candidate interactors based on expression profiling²⁶. We subsequently integrated STRING, a comprehensive resource aggregating known and predicted PPIs⁴⁶. The combined analysis yielded a consolidated interaction map detailing the principal molecular partners and pathways associated with GABA signalling, for further functional and therapeutic exploration.

Protein-Protein Interaction Network Analysis: Figure 2 depicts the STRING-generated protein–protein interaction (PPI) map for GABA-receptor-associated proteins. Nodes correspond to individual proteins and edges to interactions inferred from combined experimental and computational evidence. The GABA-A receptor subunits GABRA₁, GABRB₁, GABRB₂ and GABRB₃ form the network's principal hubs, each attaining node degrees of 9–10, consistent with their central function in inhibitory neurotransmission. Proteins with lower degrees CLCN2, HAP1, NSF, PLCL1 and TRAK2 (degrees = 4–6), occupy more specialised yet essential positions within the signalling cascade. Notably, TRAK2 (GRIF-1) displays a strong co-expression with GABRA1 ($r = 0.954$), supporting its documented role in vesicular and mitochondrial trafficking that sustains synaptic integrity²⁹.


Figure 3, generated with GeneMANIA, corroborates the STRING architecture: GABA-A subunits again dominate the connectivity landscape, whereas GPHN and NSF show intermediate linkage, reflecting their contributions to postsynaptic scaffold assembly and membrane fusion respectively. Functional enrichment highlights a shared repertoire of anion-channel activity, transmembrane transport and cell-projection organization, processes fundamental to chloride flux and neuronal excitability^{4,42}. Subnetwork interrogation revealed a direct association between GABRA1 and PPP3CA, whereas no statistically significant edge connected GABRB1 with PPP3R1. This discrepancy may reflect context-dependent interactomes or sample-specific expression constraints warranting further verification⁴⁸.

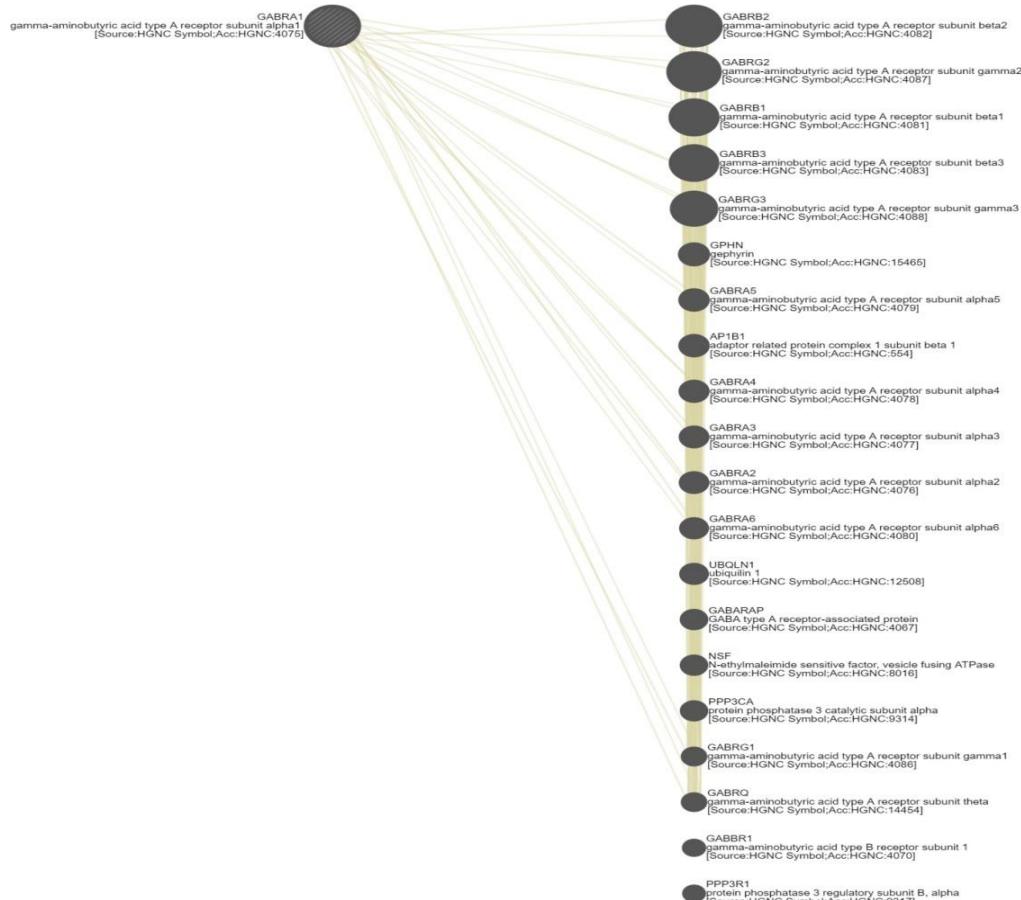

Figure 2: STRINGdb derived Protein-Protein Interaction Network of GABA Family and Associates proteins.
Colored nodes signify individual proteins, while connecting lines symbolize predicted interactions in this STRINGdb-derived network

Figure 3: GABAergic system network visualized through GeneMANIA. The network comprises genes from the GABA family and their associated interactors, represented by nodes and connecting edges

Figure 4: GeneMANIA network prioritizes pathway interactions, revealing GABRA1 (central blue node) as a hub in a network of genes associated with GABAergic signaling. Edges connect GABRA1 to other genes (gray nodes) involved in various aspects of GABA function.

Figure 5: Protein domain interaction network for GABA. Key protein domains are shown as nodes, with connecting edges representing predicted interactions. Data from Genemania highlights the central role of GABA in coordinating GABA receptors.

Network Topology and Architecture: Using a GeneMANIA analysis of GABAergic signaling components (Figure 4), we constructed a protein interaction network that reveals a highly interconnected architecture centered on the GABA_A receptor α 1 subunit (GABRA1). GABRA1 emerges as a prominent hub node directly associated with multiple other GABA_A receptor subunits (notably the α 2– α 6 subunits, GABRA2–GABRA6) as well as several key regulatory proteins (including gephyrin [GPHN], ubiquilin-1 [UBQLN1], GABA_A receptor-associated protein [GABARAP] and N-ethylmaleimide-sensitive factor [NSF]). This hub-and-spoke network organization underscores the central role of GABRA1 in coordinating GABA_A receptor assembly and function, with its numerous connections reflecting known co-assembly and co-regulation relationships within inhibitory synapses².

In essence, GABRA1 acts as a nexus that links receptor subunit diversity with the molecular machinery for receptor trafficking and anchoring, thereby maintaining the structural integrity of GABAergic synapses³². The functional interplay among network member's underscores GABA_A receptor signaling orchestration at the molecular level. GABRA1 forms the core of heteropentameric GABA_A receptors, co-assembling with the γ 2 subunit (GABRG2) to create functional chloride channels; this α 1– γ 2 partnership is

pivotal for receptor pharmacology and modulator sensitivity including benzodiazepines¹². Gephyrin (GPHN) acts as a postsynaptic scaffold, directly interacting with GABRA1 and anchoring GABA_A receptors at inhibitory synapses. This tethering mechanism ensures receptor clustering opposite presynaptic release sites, stabilizing synaptic inhibitory currents⁴¹.

Additionally, auxiliary proteins regulate receptor trafficking and turnover. UBQLN1 (Plic-1) associates with GABA_A receptor subunits, modulating their stability and surface expression, inhibiting premature degradation and increasing receptor availability for membrane insertion. GABARAP interacts with GABA_A receptors and binds NSF, a trafficking ATPase, forming a complex that mediates intracellular transport and recycling of receptor vesicles.

NSF's interaction via GABARAP facilitates receptor mobilization from the synaptic membrane, vital for the dynamic regulation of synaptic strength⁴. These protein–protein interactions (co-assembly, scaffolding and trafficking machinery) are crucial for the clustering, localization and synaptic maintenance of GABA_A receptors^{4,41}. Disruption of any network component such as a subunit interface or scaffold/trafficking interaction, can compromise inhibitory signaling efficacy¹⁹.

Shared Domain Network Analysis: A PFAM/InterPro domain analysis was conducted to elucidate the common structural features among GABA_A receptor subunits and their related proteins. The resulting shared-domain network demonstrated that the GABA_A receptor $\alpha 1$ subunit (GABRA1) occupies a central hub position. Specifically, GABRA1 contains the characteristic neurotransmitter-gated ion-channel ligand-binding domain and transmembrane domain (Pfam IDs PF02931 and PF02932), which are prevalent within this receptor family.

InterPro annotations further indicate that GABRA1 shares key domain signatures (IPR006202 and IPR006029) with several other subunits. This shared architecture elucidates its

high connectivity: GABRA1 connects with various GABA_A α , β and γ subunits within the domain network, emphasizing its role as a structural nexus²⁰. Such centrality in the PFAM/InterPro-based network underlines GABRA1's fundamental role and suggests that it may be a prime target for ligand binding, attributable to the conservation of its domain interface across the receptor family.

Molecular Docking and Top Ligands: Molecular docking of a diverse ligand library against the GABRA1 binding site identified several compounds with notable binding affinities⁵¹. Table 2 summarizes the top-ranking docked ligands, including their binding free energies (ΔG) and estimated inhibition constants (K_i).

Table 1
Ligand Properties of the Compounds Selected for Docking Analysis

S.N.	Compound	Molar weight g/mol	Molecular Formula	H Bond Donor	H Bond Acceptor	Rotatable bonds
1.	Aletamine	161.24 g/mol	C ₁₁ H ₁₅ N	1	1	4
2.	Calacorene	200.32 g/mol	C ₁₅ H ₂₀	0	0	1
3.	Calamenene	202.33 g/mol	C ₁₅ H ₂₂	0	0	1
4.	Camphene	136.23 g/mol	C ₁₀ H ₁₆	0	0	0
5.	Carvacrol	150.221 g/mol	C ₁₀ H ₁₄ O	1	1	1
6.	Caryophyllene	204.35 g/mol	C ₁₅ H ₂₄	0	0	0
7.	Chavibetol	164.2 g/mol	C ₁₀ H ₁₂ O ₂	1	2	3
8.	Germacrene D	204.35 g/mol	C ₁₅ H ₂₄	0	0	1
9.	Humulene	204.35 g/mol	C ₁₅ H ₂₄	0	0	0
10.	Kurchessine	372.6 g/mol	C ₂₅ H ₄₄ N ₂	0	2	3
11.	Limonene	136.23 g/mol	C ₁₀ H ₁₆	0	0	1
12.	Linalool	154.25 g/mol	C ₁₀ H ₁₈ O	1	1	4
13.	Linalyl acetate	196.29 g/mol	C ₁₂ H ₂₀ O ₂	0	2	6
14.	Myrcene	136.238 g/mol	C ₁₀ H ₁₆	0	0	4
15.	Neophytadiene	278.5 g/mol	C ₂₀ H ₃₈	0	0	13
16.	Piperazine	86.14 g/mol	C ₄ H ₁₀ N ₂	2	2	0
17.	Pyrazine	80.09 g/mol	C ₄ H ₄ N ₂	0	2	0
18.	Quinazolinone	146.15 g/mol	C ₈ H ₆ N ₂ O	1	1	0
19.	Quinoxaline	130.15 g/mol	C ₈ H ₆ N ₂	0	2	0
20.	Spathulenol	220.35 g/mol	C ₁₅ H ₂₄ O	1	1	0
21.	Stigmasterol	412.7 g/mol	C ₂₉ H ₄₈ O	1	1	5

Table 2
Molecular Docking Results of Phytochemicals Against GABA-A Receptor

Compound	ΔG (kcal/mol)	K_i (μ M)	Electrostatic Energy (kcal/mol)	Total Intermolecular Energy (kcal/mol)	Interaction Surface
Stigmasterol	-6.58	14.96	-0.03	-7.76	650.65
Aletamine	-6.43	19.23	-1.78	-7.76	421.96
Kurchessine	-6.16	30.57	-0.60	-7.11	618.91
Spathulenol	-5.33	123.58	-0.15	-5.63	452.36
Germacrene D	-5.19	157.53	-0.09	-5.49	482.57
Neophytadiene	-4.32	679.91	-0.06	-7.34	594.36
Pyrazine	-4.81	296.93	-1.26	-4.81	263.95
Caryophyllene	-5.13	173.28	-0.00	-5.13	434.22
Quinazolinone	-4.25	771.26	-0.08	-4.25	353.71
Camphene	-4.64	396.63	-0.02	-4.64	370.91

In molecular docking–driven drug discovery, the binding free energy (ΔG) and inhibition constant (K_i) serve as complementary metrics for ranking and prioritizing lead compounds: ΔG quantifies the thermodynamic favorability of ligand–target complex formation (more negative values indicating stronger, more stable binding), while K_i estimates the ligand concentration required to inhibit half of the target sites (lower values denoting higher potency), linked by the relationship $\Delta G = RT \ln K_i$.

For example, zolpidem, a well-characterized GABA_a receptor positive allosteric modulator has been reported in recent *in silico* studies to bind with $\Delta G \approx -22.75$ kcal/mol (-95.18 kJ/mol) and a corresponding nanomolar K_i (~ 6 nM)^{15,52}. Similarly, the natural flavonoid tangeretin exhibits $\Delta G \approx -6.6$ kcal/mol against the $\alpha 1/\beta 2$ subunits, consistent with micromolar-range inhibition³. The identification of these candidates provides a focused set of lead compounds for further experimental validation, guided by their superior ΔG and K_i profiles (Table 2).

Our identified leads stigmasterol ($\Delta G = -6.58$ kcal/mol), aletamine (-6.43 kcal/mol) and kurchessine (-6.16 kcal/mol) therefore occupy a binding-affinity niche comparable to established GABAergic modulators. These

correspond to predicted K_i values in the low micromolar range, indicating moderate but significant affinity.

All three compounds outperformed other screened molecules in docking score, suggesting a favorable fit within the GABRA1 binding pocket. Notably, the top hits encompass distinct chemical scaffolds, a phytosterol (Stigmasterol), a small amine (Aletamine) and a steroid-like alkaloid (Kurchessine), implying that the binding site can accommodate chemically diverse ligands.

Binding Site Interactions: Analysis of docked poses highlights key amino acid residues specifically Tyr97, Glu155, Phe200 and Thr202 in the GABRA1 subunit, consistently mediating ligand interactions via complementary hydrogen bonds and hydrophobic contacts. These residues form a conserved structural framework critical for ligand affinity and specificity. Tyr97 and Thr202, due to their polar hydroxyl groups, primarily engage in hydrogen bonding with suitable ligand heteroatoms, while Glu155's carboxylate group frequently participates in electrostatic or hydrogen bonding interactions with ligand functionalities that are positively polarized or hydrogen-bond donors. In contrast, the aromatic side chain of Phe200 typically establishes hydrophobic contacts, notably π – π stacking interactions, stabilizing planar ligand moieties.

Table 3
Amino Acid Residue Interaction of Phytochemicals Against GABA-A Receptor (PDB-4COF)

Compound	Interactions	Amino Acid Residues
Aletamine	2	TYR 97, GLU 155, SER 156, TYR 157, PHE 200, THR 202, TYR 205
Stigmasterol	2	TYR 97, LEU 99, GLU 155, TYR 157, PHE 200, THR 202, TYR 205
Kurchessine	1	TYR 97, LEU 99, TYR 157, PHE 200, THR 202, TYR 205
Spathulenol	2	TYR 97, LEU 99, GLU 155, TYR 157, PHE 200, TYR 205
Germacrene D	1	TYR 97, GLU 155, TYR 157, PHE 200, THR 202, TYR 205
Neophytadiene	2	TYR 97, LEU 99, GLU 155, TYR 157, PHE 200, THR 202, TYR 205
Pyrazine	0	PHE 63, GLN 65, VAL 93, PRO 94, THR 96, PHE 98, ILE 130
Caryophyllene	2	TYR 97, LEU 99, GLU 155, TYR 157, PHE 200, THR 202, TYR 205
Quinazolinone	1	TYR 97, GLU 155, TYR 157, PHE 200, THR 202, TYR 205
Camphene	1	TYR 97, GLU 155, TYR 157, PHE 200, THR 202, TYR 205

Table 4
ADMET Properties of Phytochemicals

Compound	Solubility (LogS)	BBB Penetration	CYP2D6 Inhibition	Hepatotoxicity	Absorption	Plasma Protein Binding (PPB)	AlogP98	PSA 2D
Aletamine	-2.252	Yes	No	No	High	Low	-3.60	26.54
Stigmasterol	-5.699	Moderate	No	Yes	Low	High	0.67	1.40
Neophytadiene	-4.32	Moderate	No	Yes	Low	High	1.89	-
Kurchessine	-3.505	High	No	Yes	High	High	0.35	-
Germacrene D	-2.194	Yes	No	No	High	Low	-1.51	20.81
Caryophyllene	-5.69	Low	No	No	Moderate	High	0.67	1.40
Spathulenol	-5.643	Moderate	No	No	High	Moderate	3.45	0
Pyrazine	-4.81	Low	No	No	High	Moderate	-1.26	-
Quinazolinone	-4.25	Moderate	No	No	High	Moderate	-0.08	-
Camphene	-4.64	Low	No	No	High	Low	-0.02	-

Recent literature supports this binding-site signature. For instance, a 2020 docking study on GABA_A receptor modulators similarly identified residues Tyr97 and Thr202 in ligand recognition, underscoring their role in forming critical hydrogen-bonding networks⁵⁰. Furthermore, other computational analyses involving benzodiazepine-like ligands also report pivotal interactions with the aromatic and hydrophobic residues analogous to Phe200, confirming its significance in ligand stabilization^{11,40}. Therefore, the repeated involvement of these residues in our docking study is consistent with established GABA_A receptor-ligand interaction patterns, providing valuable insights for targeted ligand design and optimization in neuropharmacological drug discovery.

ADMET Profiling and Drug-Likeness: All three ligands bound the GABA_A $\alpha 1$ receptor site with notable but differing interactions. Stigmasterol (rigid steroid) and kurchessine (steroidal alkaloid) showed the highest AutoDock binding affinities (-7 to -8 kcal/mol), while the smaller, flexible aletamine had a lower score (-5 kcal/mol). Stigmasterol and Kurchessine engage the receptor mainly via hydrophobic contacts with aromatic residues (e.g. Tyr97 and Phe200)³⁸. Stigmasterol's single polar $-OH$ forms at most one hydrogen bond (e.g. with Thr202), whereas kurchessine's tertiary amine can form an electrostatic interaction with a negatively charged residue (Glu155). Aletamine (α -allylphenethylamine) can donate an H-bond and likely forms a cation- π or salt-bridge with β_2 -Tyr97 and Glu155, but its small size limits van der Waals contacts.

These findings suggest that the rigid polycyclic scaffolds of stigmasterol and kurchessine allow extensive lipophilic and π - π interactions (supporting higher affinity), while aletamine's flexibility and polar amine confer some hydrogen bonding but less total contact energy. Notably, zolpidem and diazepam benchmark GABA_A $\alpha 1$ ligands, similarly rely on aromatic cage interactions; zolpidem binds $\alpha 1\beta\gamma$ receptors with high affinity via a comparable binding pocket²⁴. All three compounds are predicted to cross the blood-brain barrier. Stigmasterol and kurchessine have extremely low topological polar surface areas (TPSA ~ 20 \AA^2 and ~ 5.8 \AA^2) and high logBB values (>0.3), indicating strong BBB penetration¹³.

Aletamine's TPSA (~ 30 \AA^2) also falls well below the ~ 90 \AA^2 CNS threshold and its small size (MW 161) and moderate lipophilicity likely permit brain entry. Stigmasterol ($\log P \approx 6.6$) and kurchessine ($\log P \approx 5.4$) are highly lipophilic, causing very poor aqueous solubility (predicted $\log S$ -5 to -7) and one Lipinski's rule violation²³.

Indeed, stigmasterol is classified as poorly soluble¹³. Aletamine, with an estimated $\log P \sim 2-3$, adheres to Lipinski's rules and is expected to have significantly better solubility and oral absorption. The two steroidal compounds are prone to extensive plasma protein binding, stigmasterol in particular was predicted to have $\sim 0\%$ unbound fraction in

plasma¹³ (virtually 100% bound). This could limit their free drug levels despite good BBB penetration.

Aletamine, being less lipophilic, would likely have a higher free fraction (many CNS drugs in its class are ~ 60 -80% bound). *In silico* predictions flagged stigmasterol and kurchessine as potential P-gp inhibitors (but not substrates), suggesting they could interact with efflux transporters. All three passed basic cytochrome P450 liability screens (no major CYP inhibition predicted in ADMETlab 2.0/pkCSM data).

However, the steroidal ligands may pose higher toxicity risks: stigmasterol was predicted to inhibit the hERG cardiac K $^{+}$ channel¹³ (a liability associated with QT prolongation) and its high lipophilicity and bioaccumulation could lead to off-target effects. By contrast, aletamine's structure (a simple phenethylamine) lacks obvious toxicophores; it resembles known CNS drugs (e.g. amphetamines) with manageable toxicity, though as a stimulant-like scaffold it should be evaluated for abuse potential and cardiotoxicity (some phenethylamines can interact with hERG at high concentrations).

Importantly, none of the compounds showed violations of acute toxicity thresholds in pkCSM predictions (all had high LD₅₀ estimates) and all satisfy drug-likeness filters except the lipophilicity issue for stigmasterol and kurchessine.

Established CNS-active GABA_A modulators such as diazepam, imipramine (off-target GABAergic effects) and zolpidem provide useful benchmarks. Diazepam (MW 285, XLogP ~ 2.9) (ebi.ac.uk) has a moderate lipophilicity that, combined with a low TPSA of 32.7 \AA^2 ensures efficient BBB penetration. Its water solubility is low (~ 0.05 mg/mL), a challenge overcome by formulation and it is $\sim 98\%$ plasma protein-bound, yet it remains an effective anxiolytic/sedative due to nanomolar affinity for the benzodiazepine site. Zolpidem (MW 307) is slightly more polar (TPSA 37.6 \AA^2) with $\log P \sim 3.9$ and it too readily crosses into the CNS. Zolpidem's binding is highly $\alpha 1$ -subunit-selective ($K_i \sim 80$ nM, $\alpha 1$ vs ~ 800 nM at $\alpha 2/3$)²⁴, whereas diazepam is less selective ($\alpha 1$ - $\alpha 3$ subtypes, $K_i \sim 20$ - 30 nM).

Imipramine, while primarily a monoamine reuptake inhibitor, is a tricyclic that can interact with GABA_A-allosteric sites at high concentrations. It has a comparable $\log P$ (~ 3.8) and an exceptionally low TPSA ($\sim 6 \text{ \AA}^2$, having only a tertiary amine), a profile analogous to kurchessine's extreme lipophilicity and minimal polarity.

Imipramine's development predates modern ADMET filters: it is known to be cardiotoxic in overdose (QT prolongation via hERG blockade and other mechanisms) and requires careful dosing. This underscores that high lipophilicity and low PSA, as seen in kurchessine ($\log P > 5$, TPSA $< 10 \text{ \AA}^2$), often correlate with broad tissue distribution and off-target toxicity.

In terms of qualitative solubility class, diazepam and zolpidem are class II (low solubility, high permeability) similar to stigmasterol, whereas aletamine's predicted solubility suggests it could be class I or II depending on salt form. All the reference drugs exhibit high plasma protein binding (>90%) and relatively long half-lives *in vivo*, whereas aletamine might have a shorter half-life unless formulated as a sustained-release, due to its lower lipophilicity.

Network Centrality and Drug Targeting Implications: We examined GABRA1 in protein–protein interaction networks to explore drug targeting opportunities. GABRA1 is highly connected in interactome databases (STRING, GeneMANIA), interacting with various GABA_A receptor subunits and synaptic proteins. Its high degree centrality positions GABRA1 as a hub node in the GABAergic signaling pathway. Targeting such a hub can be impactful; modulating GABRA1 might influence multiple components of the inhibitory neurotransmission network. Hub proteins in PPI networks are attractive drug targets due to their roles in many biochemical pathways. Strong-binding ligands from our docking study engaging GABRA1 may have broader therapeutic effects, such as enhancing inhibitory tone if GABRA1 function is positively modulated.

This perspective aligns with our domain analysis which identifies GABRA1 as a key structural subunit. Linking molecular binding data with network properties emphasises that centrality can guide drug target selection for potent binding and system-wide benefits. Thus, GABRA1's domain conservation, PPI hub status, favorable docking energetics and drug-like ligand properties present a strong case for it as a therapeutic target. Ligands stigmasterol, aletamine and kurchessine are promising candidates for drug development targeting this GABA_A receptor subunit, potentially enabling precise modulation of inhibitory signaling²². The Genemania network maps GABAergic signaling architecture and identifies therapeutic nodes. GABRA1's central role underscores its significance as a target for pharmacological agents (like benzodiazepines and barbiturates) in epilepsy and anxiety disorders, where enhancing GABA_A receptor activity is beneficial⁹. Identifying hub proteins and critical links supports prioritizing molecular targets that could enhance GABAergic tone and mitigate neural dysregulation in disease.

Conclusion

The present multi-scale *in silico* study reveals that *Piper betle* Linn. phytochemicals can favorably target the GABA_A receptor through an integrated network and molecular approach. Key compounds such as stigmasterol, kurchessine and aletamine exhibited high binding affinity (negative ΔG values) in molecular docking, engaging critical amino acid residues (Tyr97, Glu155, Thr202) in the GABRA1 subunit's ligand-binding domain. Network biology analyses (STRING, GeneMANIA) highlighted GABRA1 as a central

hub in the GABAergic interactome and this centrality correlated with strong ligand binding, suggesting that targeting highly connected proteins yields potent interactions.

Domain profiling (PFAM/InterPro) further confirmed overlap of the ligand-binding site with conserved neurotransmitter receptor domains, reinforcing the validity of the docking results. Importantly, ADMET predictions (ADMETLab) indicated that the lead phytochemicals possess drug-like properties, for example, the lipophilic sterol stigmasterol can penetrate the blood–brain barrier and showed low toxicity risks alongside acceptable solubility and safety profiles. These findings demonstrate the efficacy of integrating network pharmacology with molecular docking, as evidenced by the strong alignment between target network centrality and ligand affinity and the successful identification of lead compounds.

Future studies should focus on experimental *in vitro* and *in vivo* validation of these candidates, structural optimization to enhance potency and pharmacokinetics and deeper pathway analyses to understand system-wide effects. Translationally, this work bridges Ayurvedic phytomedicine and modern neuropharmacology, underscoring the potential of *P. betle* derived compounds to complement conventional therapies for GABAergic dysregulation in neurodegenerative diseases. Overall, our results highlight a broader implication for network-based drug discovery using natural products, illustrating how an integrative bioinformatics pipeline can accelerate the discovery of novel GABAergic modulators from medicinal plants.

References

1. Agamah F.E., Mazandu G.K., Hassan R., Bope C.D., Thomford N.E., Ghansah A. and Chimusa E.R., Computational/*In silico* methods in drug target and lead prediction, *Briefings in Bioinformatics*, **21**(5), 1663–1675 (2020)
2. Ahmetov I.I. and Fedotovskaya O.N., Current Progress in Sports Genomics, *Advances in Clinical Chemistry*, **70**, 247–314 (2015)
3. Al Hasan M.S. et al, Tangeretin enhances sedative activity of diazepam in Swiss mice through GABA_A receptor interaction: *In vivo* and *In silico* approaches, *Neuroscience*, **572**, 1–10 (2025)
4. Alberts B., Johnson A., Lewis J., Raff M., Roberts K. and Walter P., Ion Channels and the Electrical Properties of Membranes, <https://www.ncbi.nlm.nih.gov/books/NBK26910/> (2002)
5. Allen M.J., Sabir S. and Sharma S., GABA Receptor, *Trends in Pharmacological Sciences*, **2**(C), 62–64 (2023)
6. Barrantes F.J. and Fantini J., From hopanoids to cholesterol: Molecular clocks of pentameric ligand-gated ion channels, *Progress in Lipid Research*, **63**, 1–13 (2016)
7. Basavarajappa B., Shivakumar M., Joshi V. and Subbanna S., Endocannabinoid system in neurodegenerative disorders, *Journal of Neurochemistry*, **142**(5), 624–648 (2017)

8. Bateman A., Martin M.J., Orchard S., Magrane M., Ahmad S., Alpi E., Bowler-Barnett E.H., Britto R., Bye-A-Jee H., Cukura A., Denny P., Dogan T., Ebenezer T.G., Fan J., Garmiri P., da Costa Gonzales L.J., Hatton-Ellis E., Hussein A., Ignatchenko A. and Zhang J., UniProt: the Universal Protein Knowledgebase in 2023, *Nucleic Acids Research*, **51(D1)**, D523 (2023)
9. Ben-Ari Y., Khalilov I., Kahle K.T. and Cherubini E., The GABA excitatory/inhibitory shift in brain maturation and neurological disorders, *The Neuroscientist: A Review Journal Bringing Neurobiology, Neurology and Psychiatry*, **18(5)**, 467–486 (2012)
10. Bhosale A., Targeting covid-19 through active phytochemicals of betel plant by molecular docking, *International Academic Publishing House*, **32**, 178–187 (2023)
11. Bhuiya M.S., Rokonuzzman M., Hossain M.I., Ansari S.A., Ansari I.A., Islam T. and Islam M.T., Anxiolytic-like effects by trans-ferulic acid possibly occur through GABAergic interaction pathways, *Pharmaceuticals*, **16(9)**, 1271 (2023)
12. Boué-Grabot E., Dufy B. and Garret M., Molecular diversity of GABA-gated chloride channels in the rat anterior pituitary, *Brain Research*, **704(1)**, 125–129 (1995)
13. Bucao X.E.N. and Solidum J.N., *In silico* evaluation of antidiabetic activity and ADMET prediction of compounds from *Musa acuminata* Colla peel, *Philippine Journal of Science*, **1**, 171–192 (2022)
14. Chandran A. and Rochet J., Shining a light on autophagy in neurodegenerative diseases, *Journal of Biological Chemistry*, **298(1)**, 101437 (2022)
15. Djebaili R., Kenouche S. and Daoud I., Investigation of [3H] diazepam derivatives as allosteric modulators of GABA_A receptor $\alpha 1\beta 2\gamma 2$ subtypes: combination of molecular docking/dynamic simulations, pharmacokinetics/drug-likeness prediction and QSAR analysis, *Structural Chemistry*, **34**, 791–823 (2023)
16. Dugger B. and Dickson D., Pathology of neurodegenerative diseases, *Cold Spring Harbor Perspectives in Biology*, **9(7)**, a028035 (2017)
17. Franz M., Rodriguez H., Lopes C., Zuberi K., Montojo J., Bader G.D. and Morris Q., GeneMANIA update 2018, *Nucleic Acids Research*, **46(W1)**, W60–W64 (2018)
18. Gabr M. and Yahiaoui S., Multitarget therapeutics for neurodegenerative diseases, *Biomed Research International*, **2020**, 1–2 (2020)
19. Gandolfi D., Boiani G.M., Bigiani A. and Mapelli J., Modeling neurotransmission: Computational tools to investigate neurological disorders, *International Journal of Molecular Sciences*, **22(9)**, 4565 (2021)
20. Ghit A. et al, GABA_A receptors: structure, function, pharmacology and related disorders, *Journal of Genetic Engineering and Biotechnology*, **19(1)**, 123 (2021)
21. Goldsmith M., Abramovitz L. and Peer D., Precision nanomedicine in neurodegenerative diseases, *ACS Nano*, **8(3)**, 1958–1965 (2014)
22. Gulhane H., Misra A.K., Reddy P., Pandey D., Gulhane R. and Varma S.K., Effects of *Piper betle* Linn leaves (paan) extract as anti-depressant and anti-anxiety in experimental animals, *Mintage Journal of Pharmaceutical and Medical Sciences*, **4(2)**, 12–15 (2015)
23. Gupta N., Choudhary S.K., Bhagat N., Karthikeyan M. and Chaturvedi A., *In silico* prediction, molecular docking and dynamics studies of steroidal alkaloids of *Holarhena pubescens* Wall. ex G. Don to guanylyl cyclase C, *Molecules*, **26(14)**, 4147 (2021)
24. Hanson S.M., Morlock E.V., Satyshur K.A. and Czajkowski C., Structural requirements for eszopiclone and zolpidem binding to the γ -aminobutyric acid type-A (GABA_A) receptor, *Journal of Medicinal Chemistry*, **51(22)**, 7243–7252 (2008)
25. Hassan T., Saeed S., Hassan M., Naseem S. and Siddique S., Ethnomedicinal plants in the treatment of neurodegenerative diseases: a narrative review, *Gomal Journal of Medical Sciences*, **19(1)**, 35–44 (2021)
26. Hruz T., Laule O., Szabo G., Wessendorp F., Bleuler S., Oertle L., Widmayer P., Gruissem W. and Zimmermann P., Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes, *Advances in Bioinformatics*, **2008**, 1–5 (2008)
27. <https://www.ebi.ac.uk/chembl/explore/compound/CHEMBL12>
28. Ilyas M., Salpietro V., Efthymiou S., Bourinari T., Tariq A., Imdad M. and Houlden H., Identification of common genetic markers of paroxysmal neurological disorders using a network analysis approach, *Neurological Sciences*, **41**, 851–857 (2020)
29. Jacob T.C., Moss S.J. and Jurd R., GABA_A receptor trafficking and its role in the dynamic modulation of neuronal inhibition, *Nature Reviews Neuroscience*, **9(5)**, 331 (2008)
30. Krishna U., Nayak R.P. and Chaitra S.R., Evaluation of antianxiety properties of *Piper betle* L. leaf extracts on Swiss albino mice, *Indian J Pharm Pharmacol*, **7(4)**, 256–261 (2020)
31. Maleeva G., Wutz D., Rustler K., Nin-Hill A., Rovira C., Petukhova E. and Bregestovski P., A photoswitchable GABA receptor channel blocker, *British Journal of Pharmacology*, **176(15)**, 2661–2677 (2019)
32. Mele M., Costa R.O. and Duarte C.B., Alterations in GABA_A-receptor trafficking and synaptic dysfunction in brain disorders, *Frontiers in Cellular Neuroscience*, **13**, 77 (2019)
33. Morris G.M., Goodsell D.S., Halliday R.S., Huey R., Hart W.E., Belew R.K. and Olson A.J., Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function, *Journal of Computational Chemistry*, **19(14)**, 1639–1662 (1998)
34. Morris-Rosendahl D.J. and Crocq M.A., Neurodevelopmental disorders—the history and future of a diagnostic concept, *Dialogues in Clinical Neuroscience*, **22(1)**, 65–72 (2020)
35. Mukafiah N., Study of antibacterial activity of green betel leaf (*Piper betle* L.) and red betel leaf (*Piper crocatum* L.) extract

against *Pseudomonas aeruginosa* bacteria, *Farmasains Jurnal Farmasi Dan Ilmu Kesehatan*, **7**(1), 47-56 (2022)

36. Novelia S. and Carolin B., Health counseling and provision of betel leaves to reduce physiological leucorrhea among adolescent girls, *Journal of Community Empowerment for Multidisciplinary (JCEMTY)*, **1**(1), 23–28 (2023)

37. Ou G., Lin W. and Zhao W., Neuregulins in neurodegenerative diseases, *Frontiers in Aging Neuroscience*, **13**, 662474, doi: 10.3389/fnagi.2021.662474 (2021)

38. Padgett C.L., Hanek A.P., Lester H.A., Dougherty D.A. and Lummis S.C., Unnatural amino acid mutagenesis of the GABA_A receptor binding site residues reveals a novel cation-pi interaction between GABA and β 2Tyr97, *Journal of Neuroscience*, **27**(4), 886–892 (2007)

39. Parikh P.K., Savjani J.K., Gajjar A.K. and Chhabria M.T., Bioinformatics and cheminformatics tools in early drug discovery, Bioinformatics Tools for Pharmaceutical Drug Product Development, 147–181 (2023)

40. Patra S., Dey J., Kar S. and Chakraborty A., Delivery of chlorambucil to the brain using surface modified solid lipid nanoparticles, *ACS Applied Bio Materials*, **7**(5), 3403–3413 (2024)

41. Pizzarelli R., Griguoli M., Zacchi P., Petroni E.M., Barberis A., Cattaneo A. and Cherubini E., Tuning GABAergic inhibition: Gephyrin molecular organization and functions, *Neuroscience*, **439**, 125 (2020)

42. Rahmati N., Hoebeek F.E., Peter S. and De Zeeuw C.I., Chloride homeostasis in neurons with special emphasis on the olivocerebellar system: Differential roles for transporters and channels, *Frontiers in Cellular Neuroscience*, **12**, 101 (2018)

43. Raju N.R., Rashmitha S.V., Pavithra S., Torres E.A., Kishor M. and Achar R.R., Effects of medicinal plants and phytochemicals on schizophrenia, *Phytochemical Drug Discovery for Central Nervous System Disorders: Biochemistry and Therapeutic Effects*, 81–136 (2023)

44. Scotter E., Vance C., Nishimura A., Lee Y., Chen H., Urwin H. and Shaw C., Differential roles of the ubiquitin proteasome system

(UPS) and autophagy in the clearance of soluble and aggregated TDP-43 species, *Journal of Cell Science* **127**(6), 1263–78 (2014)

45. Solis F.J. and Wets R.J.B., Minimization by random search techniques, *Mathematics of Operations Research*, **6**(1), 19–30 (1981)

46. Szklarczyk D., Gable A.L., Nastou K.C., Lyon D., Kirsch R., Pyysalo S., Doncheva N.T., Legeay M., Fang T., Bork P., Jensen L.J. and von Mering C., The STRING database in 2021: Customizable protein–protein networks and functional characterization of user-uploaded gene/measurement sets, *Nucleic Acids Research*, **49**(D1), D605–D612 (2021)

47. Szklarczyk D., Kirsch R., Koutrouli M., Nastou K., Mehryary F., Hachilif R. and von Mering C., The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest, *Nucleic Acids Research*, **51**(D1), D638–D646 (2023)

48. Truong T.T., Panizzutti B., Kim J.H. and Walder K., Repurposing drugs via network analysis: Opportunities for psychiatric disorders, *Pharmaceutics*, **14**(7), 1464 (2022)

49. Viswanad V., Anand P. and Shammika P., Advancement of riluzole in neurodegenerative disease, *International Journal of Pharmaceutical and Clinical Research*, **9**(3), 214–217 (2017)

50. Wang Z., Wang S., Li Y., Guo J., Wei Y., Mu Y. and Li W., A new paradigm for applying deep learning to protein–ligand interaction prediction, *Briefings in Bioinformatics*, **25**(3), bbae145 (2024)

51. Zhang Y.H., Zhao P., Gao H.L., Zhong M.L. and Li J.Y., Screening targets and therapeutic drugs for Alzheimer’s disease based on deep learning model and molecular docking, *Journal of Alzheimer’s Disease*, **100**(3), 863–878 (2024)

52. Zheng X., Wang C., Zhai N., Luo X., Liu G. and Ju X., *In silico* screening of novel α 1-GABA_A receptor PAMs towards schizophrenia based on combined modeling studies of imidazo [1,2-a]-pyridines, *International Journal of Molecular Sciences*, **22**(17), 9645 (2021).

(Received 13th May 2025, accepted 09th July 2025)